
Information Complexity Hypothesis:
a Conceptual Framework for Reasoning on

Pragmatics Issues

Vladimir E. Zyubin*
* Institute of Automation and Electrometry SB RAS/Novosibirsk State University,

Novosibirsk, Russia, zyubin@iae.nsk.su

Abstract— This paper presents an overview of recent re-
search on human factors in computer and information sys-
tems. In the paper, we discuss the cognitive processes, struc-
ture of human memory and human limits for processing
information, and formulate hypothesis of information com-
plexity. The result of this work is a set of domain-free prin-
ciples, which creates a compact conceptual framework for
reasoning on pragmatics issues. The principles are applica-
ble to various stages of program lifecycle and design of new
programming languages.

I. INTRODUCTION
The questions of human factors, psychology and aes-

thetics in programming were raised by Andrey Ershov as
far back as the beginning of the programming era [1],
when profession of programmer was an elite one. These
questions have no answers and stay aside from common
computer science investigations hitherto.

The status quo in computer science shows that the
community concentrates its efforts on the mathematical
aspects of the human-computer system, while human as-
pects of programming are mostly disregarded. Some few
examples of notable works on the topics of software psy-
chology [2-4], and computer language pragmatics, e.g. [5,
6], are rather the exceptions that prove the rule. But, is
programming just a bit manipulation as it looks like from
computing mathematics’ point of view? Is there any harm
for computer if the program it executes consists of the
goto statements [7]? Can we restrict our investigations to
the computer insides only, if programming is a human
activity? Can we discover the laws of programming, while
we ignore a valuable part of the problem?

The present work is based on the presupposition that
programming is a branch of human activity, where human
beings create programs exclusively for human beings and
use computers for it at a few stages of the process only. So
computer science ought to take into consideration not only
computer aspects of the process, but comprehensive re-
search of the human-computer system also, where human
factors are a valuable part at least. But as a matter of fact,
human aspects become the most valuable part of pro-
gramming when we touch on questions of requirements
analysis, specification, design, coding (as a computer lan-
guage usage), and maintenance.

Historically, computer science has its roots in mathe-
matics, so it is considered as so called exact science. Stu-
dents specialized in computer science have no courses on
elements of psychology yet. On the other hand, psychol-

ogy is considered rather as a part of the humanities and is
not interested in the domain of strict formalisms.

The consequences of this tragedy are very painful. Let’s
just recall the Algol language project, when despite of
great intellectual investments the language has collapsed
under the weight of its complexity as well as the tower of
Babel.

In the case any successful attempt to combine computer
science and psychology will give powerful and useful
conceptual means that can help us to avoid such a mess at
least. The author strongly believes that computer science
has no future without common familiarization of the psy-
chology conceptual means and their assimilation in prac-
tice and education process.

In this paper, we discuss the cognitive processes, struc-
ture of human memory and human limits for processing
information, formulate hypothesis of information com-
plexity, and explore some well-known cases from the cre-
ated outlook. The result of this work is a set of domain-
free principles, which allows to reach information com-
plexity reduction with new knowledge level of informa-
tion complexity origins. The principles are applicable to
various stages of program lifecycle and design of new
programming languages.

II. HUMAN ASPECTS OF PROGRAMMING
In computer science, the most familiar work from psy-

chology domain is the old article “The Magical Number
Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information” by G.A. Miller [8]. The main idea
of the paper is within the title: a human being has a limit
on processing information, which is specified by the num-
ber seven. We have serious mental problems when we
deal with semantically separated units, which number ex-
ceeds the threshold value. The magical number is widely
cited in the computer literature, e.g. see [9], but the cita-
tions look like mechanical ones. Firstly, the authors use
the exact number, while the original number is a “magi-
cal” one, or to be more precise, the threshold value is
specified by range because it depends on some circum-
stances we will discuss below. Secondly, the article re-
ports about valuable exception for the rule. The limit be-
comes far beyond the bounds of the range if the target
group is familiar with the topic the units belong to.
Thirdly, the experiments show that the limits can be over-
come if the units additionally have semantically different
perspectives. G.A. Miller writes ‘The better know a little
about much than know much about a little’.

mailto:zyubin@iae.nsk.su

Miller’s law is very useful for cognitive process under-
standing, but the aforementioned nuances encourage us to
look at the problem a bit deeper and try to draw more de-
tailed picture by examination of the human memory struc-
ture [4].

Human memory consists of two main parts (although
they have no strict boundary and rather reflects conceptual
level than objects or some parts of human brain). These
parts are short-terms memory and long-term memory [10].
Their features are show in the following table.

TABLE I.
FEATURES OF SHORT-TERM AND LONG-TERM MEMORIES

Type
of memory

Labor
intensity of
load

Time
of storage Semantic capacity

Short-term Negligible Up to 30 sec 7 ± 2 associated
entities

Long-term Intense Static storage Practically unlimited

The short-term memory demands no effort to load, but

limits operation time and quantity of the operands. In or-
der to retain information in short-term memory, it must be
constantly rehearsed, which requires effort. Humans ex-
perience a feeling of relief when information no longer
needs to be rehearsed and can be forgotten. This relief,
experienced at the completion of a task, is termed closure.
The need for closure suggests that it would be preferable
to work with small portions of a task at a time and to be
able to release the information at completion of that por-
tion. That problem is also known as closure problem [4].
The limits directly connected with information complexity
concept, which can be interpreted as an extent of short-
term memory loading.

On the other hand we have long-term memory that has
the only limit. It demands hard efforts to load information
into. The efforts assume manipulations within short-term
memory. So the memories under question can effectively
operate jointly only.

The discussed facts lead us to the following interesting
conclusions that are very close to Greeno’s mental model
of problem solving [11].

III. INFORMATION COMPLEXITY HYPOTHESIS
Miller’s law describes the limit for processing of unfa-

miliar information only. If the subject is well known then
Miller’s law does not work. Knowledge is just a long-term
memory that is already loaded with the data. The process
of loading the long-term memory is the education process.

Also, we can comply with Miller’s law if the long-term
memory has information that looks like the target entity.
That trick is widely used in programming languages that
implement so called artificial metaphors [12], i.e. transfer
conceptual means from one specific domain to the target
one. For example we can recall relay-ladder diagrams that
use the metaphor of relay to program control algorithms.
Despite of metaphoric artifacts (i.e., misleading analogies
in the user’s mind) and other inconveniences of the
method, it is very powerful approach because of drastic
reduction of mental efforts and time expenses for initial
stage of studying.

The other approaches we implement in order to make
Miller’s law less strict are based on a decomposition of the

original problem into weakly connected parts [13]. It can
be obtained by:

• removal of inessential details,
• extraction of semantically encapsulated entities,
• decomposition into weakly-connected aspects,
• hierarchical construction.
It is necessary to note that the tricks lead to appearance

of a new information structure, where any local mental
operation keeps within Miller’s law. Process of building
such an information structure is also known as model
building.

The difference between the original entity and its model
is the following. The model consists of elements that have
the bounded above number of semantic connections ex-
clusively, while there are no a priori reasons for the origi-
nal entity to be comply with Miller’s law.

Also it is necessary to note that model building leads to
uncertainty, but the new quality (called information isola-
tion) is obtained.

If after elimination of inessential details from a target
entity, we still can not build model that complies with
Miller’s law, we have to eliminate conventionally inessen-
tial details, i.e. to build an aspectual model. So target en-
tity can have several models that structurally contradict
each other.

The above-mentioned remarks lead to the following
statements:

• Mental operations, which assume concurrent manipu-
lation with a large number of semantic entities, are impos-
sible for human being.

• Dynamic mental operations with a complex informa-
tion entity demand a model building, which must guaran-
tee compliance with Miller’s law.

• pragmatics characteristics of both constructed model
and the model description language we use ensue from
interaction of the end user’s short-term and long-term
memories.

This set of statements has been called information com-
plexity hypothesis (ICH).

ICH creates compact, but very powerful conceptual
framework for reasoning about programming language
features and other pragmatics issues. As it would be
shown below, the ICH principles are applicable in various
stages of program lifecycle and new programming lan-
guage design.

IV. WELL-KNOWN FACTS FROM THE ICH OUTLOOK

A. Graphic and Textual Programming Languages
What language is better? Most discussions on the topic

we can see around looks like holy wars. Graphic lan-
guages are called simple, intuitive, friendly, attractive,
etc., etc. WYSIWYG and WIMP are a common approach
for user interface design. But the experiments [5] show
that superiority of the graphic is debatable. What is the
matter?

Inquiring into the question shows that graphics have
two very attractive features: plenty expressive means and
simple usage of artificial metaphor. The expressive means
of graphics are color, tint, size, shape, texture, position,
orientation. Although the means are specialized (e.g.,

color, shape, texture are suited for substitution of the
qualitative aspects only, and the others are suited solely
for quantitative ones), they are very powerful because they
allow to combine semantically different perspectives.

Artificial metaphors drastically reduce mental opera-
tions on the initial step of education because of extensive
usage of the existent long-term memory contents. The side
effects of graphics are metaphoric artifacts, uncertainty,
difficulties with formal semantics of the languages, the
only generating type of grammars, etc. [12, 13].

In contrast to graphics, textual languages provide con-
sistency of external and internal (machine) data represen-
tations, easy coding standardization and modification of
the textual notation (search, search and replace functions)
and translator creation, and laconic statements. They allow
to choose arbitrary metaphor, but demand high level of
professional skill, or, in other words, specific long-term
memory contents.

The two-stage approach for programming has been
suggested in [13]. On the first stage, the main means for
programming is graphic one. The second stage assumes a
textual language. From the ICH perspective, the key ad-
vantages of the approach are the following. Graphic
means reduce the pressing on the short-term memory
when the programmer try to analyze the target task. It
allows:

• to reduce mental loading with help of an artificial
metaphor,

• to establish connections inside the team,
• to organize a constructive dialogue with the custom-

ers.
A non-zeroed level of uncertainty is a reasonable price

for the comfortable work opportunity. The faults will have
local nature and can be corrected during the second stage,
when programmer will have the long-term memory pre-
pared at the first stage.

The only problem is a seamless connection between
these presentations. The seamless problem have to be
solved individually, e.g. as it can be conducted for the
Reflex language (a C-like language designed for control
algorithms specification) [14, 15].

B. Aspect-oriented Programming
The aspect oriented programming (AOP) [16] is a style

of programming that attempts to abstract out features
common to many parts of the code beyond simple func-
tional modules and thereby improve the quality of soft-
ware. The goal of the AOP is to make it possible to deal
with cross-cutting aspects of a system’s behavior as sepa-
rately as possible. AOP is just a kind of the ICH principles
implementation, when the model building is achieved by
aspectual decomposition. The authors of AOP state the
following problems: Why do aspects contradict with each
other? What makes one aspect primary over the others?
Can we develop a clear understanding of the different
“natural shapes” that different issues have?

From the ICH outlook we can easily answer the ques-
tions.

Aspectual decomposition is made by different meta-
phors (it is not obligatory the metaphors are artificial
ones). That circumstance leads to a contradiction in model
structures that can be eliminated by hierarchical connec-
tion between the aspects only, i.e. there is a main aspect

that defines the global structure of the system and there
are biased aspects with a local sense. So called “natural
shapes” are just aspectual models that comply with
Miller’s law that can not reflect the target problem inde-
pendently because of conventionally inessential details.

C. Other Examples and the Grand Challenge
From the ICH point of view, the following discussions

could be very interesting:
• Is UML [17] a language or just a set of languages that

are called diagrams?
• Why the C++ and Java programming languages re-

semble the C language?
• What is the secret of the C language that makes the

leader of OOP Microsoft Corporation to use it for the op-
erating systems?

• Why industrial automation has chosen means of the
IEC 61131-3 standard [18], and ignore a large amount of
alternative formal models?

• Can we tell general-purpose language from domain-
specific ones? Are the OO-programming languages the
real third generation languages? Aren’t they domain-
specific, although mainstream, ones?

• What mental problems the concepts such as polymor-
phism, inheritance, and information hiding solve?

But it seems the main topic we have to discuss at the
presence is what language shall we use in order to pro-
gram the multicore processors. It is a real grand challenge
we face with. Lack of answer means we have been thrown
back in the age of low-level programming when we have
to take into consideration the platform topology. More-
over, it can lead to a collapse of the computer mainstream
at all [19]. The only way to meet the challenge is to im-
prove our understanding of programming and design the
approach that reconciles the human aspects of program-
ming with physical parallelism of the machine architec-
ture.

V. CONCLUSION
Information Complexity Hypothesis created to enhance

quality of current practice in programming has been intro-
duced. Information Complexity Hypothesis consists of
three principles that reflect natural human limits for proc-
essing information ensued from the short-term and long-
term memories interaction.

Information Complexity Hypothesis provides compact,
but very powerful conceptual framework for reasons about
programming language features.

The author believes that the introduced conceptual
means could be a significant value to programming lan-
guage research and development. Coming to understand
the natural criteria for estimation information processes
can help to our efforts to develop various kinds of com-
puter and information systems.

The author expects a number of exciting developments
using the ICH principles over the next few years that help
us to meet the present day challenges and enhance pro-
gramming process quality.

REFERENCES
[1] A. P. Ershov, “On human and aesthetic factors in programming,”

Programmirovanie J., No 1, 1990

[2] J. Seo, and B. Shneiderman, “Knowledge discovery in high di-
mensional data: Case studies and a user survey for an information
visualization tool,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, 2006

[3] B. Shneiderman, “Direct manipulation: A step beyond program-
ming languages,” IEEE Computer, vol. 16, 1983

[4] B. Shneiderman, Software psychology: human factors in computer
and information systems. Winthrop Publishers, Cambridge, MA,
1980

[5] T. R. G. Green, M. Petre, “When visual programs are harder to
read than textual programs,” Human-Computer Interaction: Tasks
and Organisation, Proc. ECCE-6 (6th European Conference on
Cognitive Ergonomics). G. C. van der Veer, M. J. Tauber, S. Bag-
narola and M. Antavolits, Eds. CUD: Rome, 1992

[6] K. N. Whitley, “Visual programming languages and the empirical
evidence for and against,” J. of Visual Languages and Computing,
vol. 8, No 1, 1997

[7] E. W. Dijkstra, “GOTO statement considered harmful”, Commu-
nication of the ACM, vol. 11, No 3, 1968

[8] G.A. Miller, “The magical number seven, plus or minus two: some
limits on our capacity for processing information,” Psychological
Review J., vol. 63, No 2, 1956

[9] D. Decker at al., Review Guidelines on Software Languages for
Use in Nuclear Power Plant Safety Systems. NRC, 1997

[10] K. A. Ericsson, W. Kintsch, “Long-term working memory,” Psy-
chological Review J., vol. 102, No 2, 1995

[11] J. G. Greeno, “The structure of memory and the process of prob-
lem solving,” Contemporary Issues in Cognitive Psychology, R.
Solso, Ed.,1973, pp.23-45

[12] V. L. Averbukh, “Metaphors of visualization,” Programmirovanie
J., No 5, 2001

[13] V. E. Zyubin, “Text and graphics: what language does program-
mer need?”, Open Systems J., No 1, 2004

[14] V. E. Zyubin, “Reflex language: a dialect of the C language for
programmable logic controllers,” Mechatronics, No 12, 2006,
pp. 31-36

[15] V. E. Zyubin, “Graphical and textual specifications for complex
control algorithms: opposition and cooperation,” Proc. El-
Pub2003 (8th Int. Conference on E-Publications), Novosibirsk,
2003

[16] G. Kizales at al., Aspect-Oriented Programming, Xerox Palo Alto
Research Center, 1999

[17] C. Larman, Applying UML and Patterns: An Introduction on Ob-
ject-Oriented Analysis and Design and Interactive Development.
2nd ed. Prentice Hall, 2001

[18] IEC 61131-3. Programmable Controllers. Part 3: Programming
Languages. 2nd ed. International Electrotechnic Commission,
1998

[19] V. E. Zyubin, “Multicore Processors and Programming,” Open
Systems J., No 7-8, 2005

