
Hyper-automaton: a Model of Control Algorithms

Vladimir E. Zyubin

Task Force “Linguistic Means of Applied Programming”, Insti-
tute of Automation and Electrometry SB RAS, prosp. acad. Kop-

tyuga 1, 630090 Novosibirsk, Russia

zyubin@iae.nsk.su

keywords: hyper-automaton, control algorithms, mod-
eling, event-driven polymorphism.

Abstract. The hyper-automaton is introduced as a model of
complex control algorithms. The model reflects basic aspects
of control algorithms: presence of an external environment,
cyclic and event-driven functioning, synchronism, hierarchi-
cal structure and logical parallelism. The paper introduces
basic definitions and conceptual means of hyper-automaton
model, which encourage program implementation of the al-
gorithms. A new kind of functional polymorphism we name
event-driven polymorphism is distinguished and discussed.

1 Introduction
Present-day digital control system is the only way for industrial
automation. The heart of such a system is programmable logic con-
troller (PLC). PLC contains a microcomputer based control device,
usually with multiple inputs and outputs, and software, which im-
plements specific functions such as I/O control, logic, timing, count-
ing, three mode (PID) control, communication and arithmetic. Soft-
ware plays an ever-increasing role in industrial automation. With
this, the associated software cost increase even to the point that it
becomes the highest part of the total expenses.

PLC programming assumes formal languages and design patterns
based on fundamental formalisms such as a control algorithm model,
conceptual means and terminology, which reflect main aspects of
control algorithms.

mailto:zyubin@iae.nsk.su

In the last thirty years, a variety of different formalisms for
specifying control and reactive systems were introduced, like Hoare’s
model of Communicating Sequential Processes [1], Harel’s State-
charts [2], Input / Output Automata [3], Esterel [4], Calculus of
Communicating Systems [5], and their timed extensions [6, 7], to
name a few. In general, each of them was introduced targeting a
specific area of investigation. So, for the engineer it is not always
obvious which model to select for a specific application domain. As a
result the industry has chosen very disputable and heterogeneous
means of the IEC 61131-3 [8] standard: relay logic language, func-
tional block diagram, and sequential function chart. Experts criticize
the standard for the low expressiveness of the languages, their seri-
ous limitations and yet mention the standard as an example of a
misuse of standardization process [9]. So, a homogeneous and flexi-
ble model of control algorithm could drastically reduce expenses of
PLC programming.

The idea of constructing a special formalism for reasoning about
control algorithms is not new. A large amount of related work has
been published over the years. Unfortunately, the efforts were dissi-
pated over different fields: reactive systems, programming, logic,
parallelism, homeostatic systems, so called real-time systems, robot-
technique, etc., while the solution needs integral activities.

The author strongly believes that useful formalism for control al-
gorithms can be designed on base of precise analysis of the target
task only. The formalism has to reflect basic features of the field and
must encourage a program implementation. In particular, the last
assumes that conceptual means and terminology of the formalism
should be compliant with the modern tendencies in education,
namely, the total computerization.

In this paper we discuss hyper-automaton model, which is intro-
duced as a useful formalism for control algorithms reasoning. In
section 2 we discover basic features of control algorithms. In section
3 we give hyper-automaton model of control algorithm. Finally, in
section 4 we sum up the results of the previous sections.

2 Basic Features of Control Algorithms
When we speak about a modern control we expect to see a digital
control system, which includes feedback sensors and actuators. Sen-
sors and actuators are connected to an external environment – so
called controlled object, which implements an industrial process.
The system acts on the controlled object by means of the actuators.
The actions or, to be more precise, reactions of the control system
are formed by control algorithm according to events, which are hap-
pened in controlled object. Events are continuously come in the con-
trol system from sensors. For digital control systems this circum-
stance causes cyclic functioning of control algorithm according to
the following pattern: a) input of information about current state of
controlled object by way of sensors, b) data processing and determi-
nation of required reaction, c) and data output, which changes cur-
rent state of the actuators. Event-driven nature of control algorithm
implies an algorithmic alteration of the program and a set of proc-
essed input / output signals depending on the events, i.e. control
algorithms have a behavior, which cannot be defined by the knowl-
edge of inputs only, but depends on the history of the events.

Control algorithm implies synchronization of its functioning with
physical processes in the external environment. So, there is necessity
of a time maintenance system and active manipulations with time
entities such as time interval, time delay, and timeout.

The mass logical parallelism is another unique feature of control
algorithms. It reflects existence of a large set of concurrent (or to be
precise – independent and weakly connected) physical processes in
the controlled objects. As the events appear in an arbitrary conse-
quence, any attempt to describe the system reaction within a mono-
lithic block leads to a combinatorial task with exponential increase
of complexity, so called the combinatorial explosion of complexity
[10]. Mass logical parallelism means that control algorithm consists
of a large amount of independent and weakly connected parts, logi-
cally isolated control flows.

At last, any complex control algorithm has to have hierarchical
structure that reflects artificial nature of the external environment,
the designer plan that is implemented in form of the facilities [11].
Because of the logical parallelism, the hierarchical structure consists

of chains independently executed in parallel. It means that the diver-
gence and convergence of control flow are a significant part of con-
trol algorithm. The algorithm structure can be arbitrary, irregular
(not having strict parent-child relations between the chains) and,
moreover, closed on itself.

Features the target model shell compliant with summarized in the
following short list:

• presence of an external environment to interact with,
• cyclic and event-driven functioning,
• synchronism,
• mass logical parallelism,
• hierarchical structure.

3 Hyper-automaton Model of Control Algorithms
Cross-impact analysis shows that the target model can be designed
on the basis of the finite state automata (FSA) theory. The FSA
model has a set of attractive characteristics, which includes presence
of external environment, event-driven behavior, and cyclic function-
ing, although they are not expressed in the model explicitly [12].

Other necessary features of the control algorithms cannot be ex-
pressed by means of FSA, namely: operations with time intervals,
mass logical parallelism, hierarchical structure, divergence and
convergence are not supported within the model.

Furthermore, the FSA model was designed for a hardware imple-
mentation. The cause was in the historical circumstances of the
model creation [13], and negative effects become apparent even on
conceptual level, e.g. in the terms “input alphabet” and “output al-
phabet”. The FSA model is extremely hard for studying, especially
under the nowadays condition of totally computerized living envi-
ronment and education. That leads to common misunderstanding
and discourages the usage of this potentially very powerful concept
[14].

We need modify the FSA model if we want the formalism will be
understood and implemented in the software domain. To achieve the
target model we introduce a concept of process.

3.1 Process
A process is a state machine where the states are functions. So we
define process as a set of mutually exclusive functions, which are
handled as a unified entity, or polymorphic function. Every time we
call the process, it reduces to one of its function called current func-
tion. The current function provides the instructions to execute. One
of possible instructions is ‘to change the current function of specified
process’. Also process has its own timer, which is zeroed when the
process changes its current function. Mathematically, i-th process is
a quintuple

pi = <Fi, f1i, fcuri, Ti>, where (1)
• Fi is a set of mutually exclusive functions,
• f1i is the first function, (f1i ∈ Fi),
• fcuri is the current function, fcuri ∈ Fi,
• Ti is the current time.
The Fi and f1i elements characterize static features of the process.

The fcuri and Ti elements give us means for reasoning about a proc-
ess dynamics.

3.2 Functions, Events and Reactions
A function of a process is a set of events and reactions to the events.
Mathematically, j-th functions of i-th process is a twain

fji = <Xji, Yji>, where (2)
• Xji is a set of events (Xji = {xji1, xji2, … , xjiL}),
• Yji is a set of reactions (Yji = {yji1, yji2, … , yjiL}).
Any change (or an optional superposition of the changes) hap-

pened inside or outside of a hyper-automaton can be considered as
an event: fcuri value of i-th process (check-state operator), value of a
variable (regular conditional expression), Ti value (timeout operator).

An event is connected to a reaction it stimulates. The reaction can
be an arbitrary superposition of operations (variable modification
and fcuri value modification) which is determined according to fcur
events.

Mutually disjoint sets of passive functions (Fpi) and active func-
tions (Fai) are distinguished among process functions (fji ∈ Fi).

A function fji is a passive function (fji ∈ Fpi) if and only if Xji =
∅.

The “normal halt” passive function (f NH) and “error halt” passive
function (f EH) are marked passive functions. They are the same for
all processes.

3.3 Hyper-automaton

A set of communicating processes forms a hyper-automaton,
which reflects openness, event-driven nature, cyclicity, synchronism,
and mass logical parallelism of a control algorithm.

A hyper-automaton is an ordered set of processes, which are cy-
clically stirred to activity with a period of activation TH. A hyper-
automaton is a triplet:

H = <TH, P, p1>, where (3)
• TH is a period of activation,
• P is a finite nonempty and ordered set of processes

(P = {p1, p2, … , pM}, where M is the number of processes,
• p1 is the first marked process, p1 ∈ P, which is the only non-

passive when hyper-automaton starts.
Within the model we can reduce boundary conditions of the per-

fect synchrony hypothesis [7]. Instead of the original hypothesis,
which states “neither computation nor communication takes time”,
we can use the following statement: the latency period for calcula-
tion overhead is less or equal to the period of activation TH. The last
is a less idealistic and quite reasonable condition for software im-
plementation.

4 Conclusion
The aspects of the control algorithms are formulated. Namely:

• presence of an external environment to communicate with,
• cyclic and event-driven functioning,
• synchronism,
• mass logical parallelism,
• hierarchical structure.
As a new contribution, we propose the process concept in the form

of modified FSA and the hyper-automaton model. Natural means of
process concept allow create a complex hierarchical structure, which
is composed of logically parallel and intercommunicated processes.
The resulting model:

• reflects the main features of control algorithm,
• provides easy software implementation and gives conceptual

means for control algorithms,
• considers the modern tendencies in education.
Also, we introduce a new kind of functional polymorphism, which

has been called event-driven polymorphism.

References
1. Hoare, C. A. R.: Communicating Sequential Processes. Prentice-

Hall Int. (1985)
2. Harel, D.: Statecharts: a Visual Formalism for Complex Systems.

In: Science of Computer Programming 8. Elsevier Science Pub-
lishers B.V., North-Holland (1987) 231–274

3. Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata.
CWI Quarterly, 2 (1989) 219-246

4. Berry, G.: The Foundations of Esterel,.In: Plotkin, G., Stirling, C.,
and Tofte, M. (eds.) Proof, Language and Interaction: Essays in
Honour of Robin Milner, MIT Press, Foundations of Computing
Series (2000) 425–454

5. Milner, R.: Communication and Concurrency. Series in Computer
Science. Prentice Hall (1989)

6. Kaynar, D. K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O
Automata: A Mathematical Framework for Modeling and Analyz-
ing Real-Time Systems. 24th IEEE International Real-Time Sys-
tems Symposium (RTSS'03), IEEE Computer Society Cancun,
Mexico (2003), 166-177

7. Kof, L., Schätz, B.: Combining Aspects of Reactive Systems. In:
Proc. of Andrei Ershov Fifth Int. Conf. Perspectives of System In-
formatics. Novosibirsk (2003) 239-243

8. IEC 61131-3. Programmable Controllers. Part 3: Programming
Languages. 2nd edn. International Electrotechnic Commission
(1998)

9. Crater, K. C.: When Technology Standards Become Counterpro-
ductive. Control Technology Corporation (1992)

10. Zyubin, V.E.: Multicore Processors and Programming. Open
Systems J., №7-8 (2005) 12-19

11. Zyubin, V.E.: Text and Graphics: What Language Does Pro-
grammer Need? Open Systems J., №1 (2004) 54–58

12. Kuznetsov, B.P.: Psychology of the automaton-based program-
ming. BYTE/Russia, №11 (2000) 22–29

13. Glushkov, V.M.: The Synthesis of Digital Automata. PhisMath-
Gis, Moscow (1962)

14. Wagner, F., Wolstenholme, P.: Misunderstandings about State Ma-
chines. IEE J. Computing and Control Engineering, Vol. 16 (4), Aug
(2004) 40–45

